BMath-Differential Geometry-II, Supplementary Exam

INSTRUCTIONS: All problems carry equal weight and are compulsory. Total time 3 hours. Please use notations and terminology as in the course, use results done in the class without proving them. If you use a problem from some assignment/quiz/homework, please provide its solution.

- 1. Let M be a smooth manifold and $f, g \in C^{\infty}(M)$. Prove that d(fg) = gd(f) + fd(g).
- 2. Compute (i) $f^*(\omega)$ where $f : \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (xy - yz, xyz, 0) and $\omega = xd(y) \wedge dz + ydz \wedge dx + zdx \wedge dy$. (ii) $d(f^*\omega)$ where $f : \mathbb{R} \to \mathbb{R}^2$, f(x) = (-x, x) and $\omega = dy - dx$. (5+5)
- 3. Compute the Lie algebras of the real Lie groups SU(n), SO(n) and their respective dimensions. Prove that these are compact. (5+5)
- 4. Let G be a connected Lie group. Prove that the kernel of $\operatorname{Ad} : G \to \operatorname{GL}(\operatorname{Lie}(G))$ equals the center of G. What is the Lie algebra of ker(Ad)? Explain. (5+5)
- 5. (i) Let M be a smooth manifold admiting an atlas consisting of exactly two charts {(U, x), (V, y)} with U ∩ V (nonempty) connected. Prove that M is orientable. Deduce that Sⁿ is orientable for n ≥ 2.
 (ii) Prove that S¹ is orientable. (4+1+5)